641 lines
19 KiB
JavaScript
641 lines
19 KiB
JavaScript
// PoC: NL → ODMDB query (seekers), no zod — validate via ODMDB schema
|
||
// Usage:
|
||
// 1) export OPENAI_API_KEY=sk-...
|
||
// 2) node poc.js
|
||
|
||
import fs from "node:fs";
|
||
import OpenAI from "openai";
|
||
import axios from "axios";
|
||
import jq from "node-jq";
|
||
|
||
// ---- Config ----
|
||
const MODEL = process.env.OPENAI_MODEL || "gpt-5";
|
||
|
||
// ODMDB paths - point to actual ODMDB structure
|
||
const ODMDB_BASE_PATH = "../smatchitObjectOdmdb";
|
||
const SCHEMA_PATH = `${ODMDB_BASE_PATH}/schema`;
|
||
const OBJECTS_PATH = `${ODMDB_BASE_PATH}/objects`;
|
||
|
||
// ODMDB execution config
|
||
const ODMDB_BASE_URL = process.env.ODMDB_BASE_URL || "http://localhost:3000";
|
||
const ODMDB_TRIBE = process.env.ODMDB_TRIBE || "smatchit";
|
||
const EXECUTE_QUERY = process.env.EXECUTE_QUERY === "true"; // Set to "true" to execute queries
|
||
|
||
// Hardcoded NL query for the PoC (no multi-turn)
|
||
const NL_QUERY =
|
||
"show me seekers with status startasap and their email and experience";
|
||
|
||
// ---- Load schemas (safe) ----
|
||
function loadJsonSafe(path) {
|
||
try {
|
||
if (fs.existsSync(path)) {
|
||
return JSON.parse(fs.readFileSync(path, "utf-8"));
|
||
}
|
||
} catch (e) {
|
||
console.warn(`Warning: Could not load ${path}:`, e.message);
|
||
}
|
||
return null;
|
||
}
|
||
|
||
// Load actual ODMDB schemas
|
||
const SCHEMAS = {
|
||
seekers: loadJsonSafe(`${SCHEMA_PATH}/seekers.json`),
|
||
main: loadJsonSafe("./main.json"), // Fallback consolidated schema
|
||
};
|
||
|
||
// ---- Helpers to read seekers field names from your ODMDB custom schema ----
|
||
function extractSeekersPropsFromOdmdbSchema(main) {
|
||
if (!main) return [];
|
||
|
||
// Try common shapes
|
||
// 1) { objects: { seekers: { properties: {...} } } }
|
||
if (
|
||
main.objects?.seekers?.properties &&
|
||
typeof main.objects.seekers.properties === "object"
|
||
) {
|
||
return Object.keys(main.objects.seekers.properties);
|
||
}
|
||
|
||
// 2) If main is an array, search for an item that looks like seekers schema
|
||
if (Array.isArray(main)) {
|
||
for (const entry of main) {
|
||
const keys = extractSeekersPropsFromOdmdbSchema(entry);
|
||
if (keys.length) return keys;
|
||
}
|
||
}
|
||
|
||
// 3) Fallback: deep search for a { seekers: { properties: {...} } } node
|
||
try {
|
||
const stack = [main];
|
||
while (stack.length) {
|
||
const node = stack.pop();
|
||
if (node && typeof node === "object") {
|
||
if (
|
||
node.seekers?.properties &&
|
||
typeof node.seekers.properties === "object"
|
||
) {
|
||
return Object.keys(node.seekers.properties);
|
||
}
|
||
for (const v of Object.values(node)) {
|
||
if (v && typeof v === "object") stack.push(v);
|
||
}
|
||
}
|
||
}
|
||
} catch {}
|
||
|
||
return [];
|
||
}
|
||
|
||
// ---- Schema-based mapping system ----
|
||
class SchemaMapper {
|
||
constructor(schemas) {
|
||
// Use direct seekers schema if available, otherwise search in consolidated main schema
|
||
this.seekersSchema =
|
||
schemas.seekers || this.findSchemaByType("seekers", schemas.main);
|
||
this.fieldMappings = this.buildFieldMappings();
|
||
this.indexMappings = this.buildIndexMappings();
|
||
|
||
console.log(
|
||
`📋 Loaded seekers schema with ${
|
||
Object.keys(this.seekersSchema?.properties || {}).length
|
||
} properties`
|
||
);
|
||
}
|
||
|
||
findSchemaByType(objectType, schemas) {
|
||
if (!schemas || !Array.isArray(schemas)) return null;
|
||
return schemas.find(
|
||
(schema) => schema.$id && schema.$id.includes(`/${objectType}`)
|
||
);
|
||
}
|
||
|
||
buildFieldMappings() {
|
||
if (!this.seekersSchema) return {};
|
||
|
||
const mappings = {};
|
||
const properties = this.seekersSchema.properties || {};
|
||
|
||
Object.entries(properties).forEach(([fieldName, fieldDef]) => {
|
||
const synonyms = this.generateSynonyms(fieldName, fieldDef);
|
||
mappings[fieldName] = {
|
||
field: fieldName,
|
||
title: fieldDef.title?.toLowerCase(),
|
||
description: fieldDef.description?.toLowerCase(),
|
||
type: fieldDef.type,
|
||
synonyms,
|
||
};
|
||
|
||
// Index by title and synonyms
|
||
if (fieldDef.title) {
|
||
mappings[fieldDef.title.toLowerCase()] = fieldName;
|
||
}
|
||
synonyms.forEach((synonym) => {
|
||
mappings[synonym.toLowerCase()] = fieldName;
|
||
});
|
||
});
|
||
|
||
return mappings;
|
||
}
|
||
|
||
buildIndexMappings() {
|
||
if (!this.seekersSchema?.apxidx) return {};
|
||
|
||
const indexes = {};
|
||
this.seekersSchema.apxidx.forEach((idx) => {
|
||
indexes[idx.name] = {
|
||
name: idx.name,
|
||
type: idx.type,
|
||
keyval: idx.keyval,
|
||
};
|
||
});
|
||
|
||
return indexes;
|
||
}
|
||
|
||
generateSynonyms(fieldName, fieldDef) {
|
||
const synonyms = [];
|
||
|
||
// Common mappings based on actual schema
|
||
const commonMappings = {
|
||
email: ["contact", "mail", "contact email"],
|
||
seekworkingyear: ["experience", "years of experience", "work experience"],
|
||
seekjobtitleexperience: ["job titles", "job experience", "positions"],
|
||
seekstatus: ["status", "availability", "looking"],
|
||
dt_create: ["created", "creation date", "new", "recent", "since"],
|
||
salaryexpectation: ["salary", "pay", "compensation", "wage"],
|
||
seeklocation: ["location", "where", "place"],
|
||
mbti: ["personality", "type", "profile"],
|
||
alias: ["id", "identifier", "username"],
|
||
};
|
||
|
||
if (commonMappings[fieldName]) {
|
||
synonyms.push(...commonMappings[fieldName]);
|
||
}
|
||
|
||
return synonyms;
|
||
}
|
||
|
||
mapNLToFields(nlTerms) {
|
||
const mappedFields = [];
|
||
|
||
nlTerms.forEach((term) => {
|
||
const normalizedTerm = term.toLowerCase();
|
||
const mapping = this.fieldMappings[normalizedTerm];
|
||
|
||
if (mapping) {
|
||
if (typeof mapping === "string") {
|
||
mappedFields.push(mapping);
|
||
} else if (mapping.field) {
|
||
mappedFields.push(mapping.field);
|
||
}
|
||
}
|
||
});
|
||
|
||
return [...new Set(mappedFields)]; // Remove duplicates
|
||
}
|
||
|
||
getRecruiterReadableFields() {
|
||
if (!this.seekersSchema?.apxaccessrights?.recruiters?.R) {
|
||
// Fallback to basic fields
|
||
return ["alias", "email", "seekstatus", "seekworkingyear"];
|
||
}
|
||
return this.seekersSchema.apxaccessrights.recruiters.R;
|
||
}
|
||
|
||
getAllSeekersFields() {
|
||
if (!this.seekersSchema?.properties) return [];
|
||
return Object.keys(this.seekersSchema.properties);
|
||
}
|
||
|
||
getAvailableIndexes() {
|
||
return Object.keys(this.indexMappings);
|
||
}
|
||
|
||
getIndexByField(fieldName) {
|
||
const index = Object.values(this.indexMappings).find(
|
||
(idx) => idx.keyval === fieldName
|
||
);
|
||
return index ? `idx.${index.name}` : null;
|
||
}
|
||
}
|
||
|
||
// Initialize schema mapper
|
||
const schemaMapper = new SchemaMapper(SCHEMAS);
|
||
|
||
const SEEKERS_FIELDS_FROM_SCHEMA = schemaMapper.getAllSeekersFields();
|
||
|
||
console.log(
|
||
`🔍 Available seekers fields: ${SEEKERS_FIELDS_FROM_SCHEMA.slice(0, 10).join(
|
||
", "
|
||
)}${
|
||
SEEKERS_FIELDS_FROM_SCHEMA.length > 10
|
||
? `... (${SEEKERS_FIELDS_FROM_SCHEMA.length} total)`
|
||
: ""
|
||
}`
|
||
);
|
||
|
||
// ---- Minimal mapping config (for prompting + default fields) ----
|
||
const seekersMapping = {
|
||
object: "seekers",
|
||
defaultReadableFields: schemaMapper.getRecruiterReadableFields().slice(0, 5), // First 5 readable fields
|
||
};
|
||
|
||
// ---- JSON Schema for Structured Outputs (no zod, no oneOf) ----
|
||
function buildResponseJsonSchema() {
|
||
const recruiterReadableFields = schemaMapper.getRecruiterReadableFields();
|
||
|
||
return {
|
||
type: "object",
|
||
additionalProperties: false,
|
||
properties: {
|
||
object: { type: "string", enum: ["seekers"] },
|
||
condition: { type: "array", items: { type: "string" }, minItems: 1 },
|
||
fields: {
|
||
type: "array",
|
||
items: {
|
||
type: "string",
|
||
enum: recruiterReadableFields,
|
||
},
|
||
minItems: 1,
|
||
},
|
||
},
|
||
required: ["object", "condition", "fields"],
|
||
};
|
||
}
|
||
|
||
// ---- Prompt builders ----
|
||
function systemPrompt() {
|
||
const availableFields = schemaMapper.getAllSeekersFields();
|
||
const recruiterReadableFields = schemaMapper.getRecruiterReadableFields();
|
||
const availableIndexes = schemaMapper.getAvailableIndexes();
|
||
|
||
return [
|
||
"You convert a natural language request into an ODMDB search payload.",
|
||
"Return ONLY a compact JSON object that matches the provided JSON Schema.",
|
||
"",
|
||
"ODMDB DSL:",
|
||
"- join(remoteObject:localKey:remoteProp:operator:value)",
|
||
"- idx.<indexName>(value) - for indexed fields",
|
||
"- prop.<field>(operator:value) - for direct property queries",
|
||
"",
|
||
"Available seekers fields:",
|
||
availableFields.slice(0, 15).join(", ") +
|
||
(availableFields.length > 15 ? "..." : ""),
|
||
"",
|
||
"Available indexes for optimization:",
|
||
availableIndexes.join(", "),
|
||
"",
|
||
"Recruiter-readable fields (use these for field selection):",
|
||
recruiterReadableFields.join(", "),
|
||
"",
|
||
"Field mappings for natural language:",
|
||
"- 'email' → email",
|
||
"- 'experience' → seekworkingyear",
|
||
"- 'job titles' → seekjobtitleexperience",
|
||
"- 'status' → seekstatus",
|
||
"- 'salary' → salaryexpectation",
|
||
"- 'location' → seeklocation",
|
||
"- 'new/recent' → dt_create (use prop.dt_create(>=:YYYY-MM-DD))",
|
||
"",
|
||
"Rules:",
|
||
"- Object must be 'seekers'.",
|
||
"- Use indexes when possible (idx.seekstatus_alias for status queries)",
|
||
"- For date filters, use prop.dt_create with absolute dates",
|
||
"- Only return recruiter-readable fields in 'fields' array",
|
||
`- Default fields if request is generic: ${recruiterReadableFields
|
||
.slice(0, 5)
|
||
.join(", ")}`,
|
||
"",
|
||
"Timezone is Europe/Paris. Today is 2025-10-14.",
|
||
"Interpret 'last week' as now minus 7 days → 2025-10-07.",
|
||
"Interpret 'yesterday' as → 2025-10-13.",
|
||
].join("\n");
|
||
}
|
||
function userPrompt(nl) {
|
||
return `Natural language request: "${nl}"\nReturn ONLY the JSON object.`;
|
||
}
|
||
|
||
// ---- OpenAI call using Responses API (text.format) ----
|
||
const client = new OpenAI({ apiKey: process.env.OPENAI_API_KEY });
|
||
|
||
async function inferQuery(nlText) {
|
||
const resp = await client.responses.create({
|
||
model: MODEL,
|
||
input: [
|
||
{ role: "system", content: systemPrompt() },
|
||
{ role: "user", content: userPrompt(nlText) },
|
||
],
|
||
text: {
|
||
format: {
|
||
name: "OdmdbQuery",
|
||
type: "json_schema",
|
||
schema: buildResponseJsonSchema(),
|
||
strict: true,
|
||
},
|
||
},
|
||
});
|
||
|
||
const jsonText =
|
||
resp.output_text ||
|
||
resp.output?.[0]?.content?.[0]?.text ||
|
||
(() => {
|
||
throw new Error("Empty model output");
|
||
})();
|
||
|
||
const parsed = JSON.parse(jsonText);
|
||
return parsed;
|
||
}
|
||
|
||
// ---- Validate using the ODMDB schema (not zod) ----
|
||
function validateWithOdmdbSchema(candidate) {
|
||
// Basic shape checks (already enforced by Structured Outputs, but keep defensive)
|
||
if (!candidate || typeof candidate !== "object")
|
||
throw new Error("Invalid response (not an object).");
|
||
if (candidate.object !== "seekers")
|
||
throw new Error("Invalid object; must be 'seekers'.");
|
||
if (!Array.isArray(candidate.condition) || candidate.condition.length === 0) {
|
||
throw new Error(
|
||
"Invalid 'condition'; must be a non-empty array of strings."
|
||
);
|
||
}
|
||
if (!Array.isArray(candidate.fields) || candidate.fields.length === 0) {
|
||
throw new Error("Invalid 'fields'; must be a non-empty array of strings.");
|
||
}
|
||
|
||
// Validate fields against schema
|
||
const availableFields = schemaMapper.getAllSeekersFields();
|
||
const recruiterReadableFields = schemaMapper.getRecruiterReadableFields();
|
||
|
||
for (const field of candidate.fields) {
|
||
if (!availableFields.includes(field)) {
|
||
throw new Error(`Invalid field '${field}'; not found in seekers schema.`);
|
||
}
|
||
if (!recruiterReadableFields.includes(field)) {
|
||
console.warn(
|
||
`Warning: Field '${field}' may not be readable by recruiters.`
|
||
);
|
||
}
|
||
}
|
||
|
||
// DSL token sanity
|
||
const allowedTokens = ["join(", "idx.", "prop."];
|
||
for (const c of candidate.condition) {
|
||
if (typeof c !== "string")
|
||
throw new Error("Condition entries must be strings.");
|
||
const tokenOK = allowedTokens.some((t) => c.includes(t));
|
||
const ascii = /^[\x09\x0A\x0D\x20-\x7E()_:\[\].,=><!'"-]+$/.test(c);
|
||
if (!tokenOK || !ascii) throw new Error(`Malformed condition: ${c}`);
|
||
}
|
||
|
||
// Field existence check against ODMDB custom schema (seekers properties)
|
||
if (SEEKERS_FIELDS_FROM_SCHEMA.length) {
|
||
const unknown = candidate.fields.filter(
|
||
(f) => !SEEKERS_FIELDS_FROM_SCHEMA.includes(f)
|
||
);
|
||
if (unknown.length) {
|
||
// Drop unknown but continue (PoC behavior)
|
||
console.warn(
|
||
"⚠️ Dropping unknown fields (not in seekers schema):",
|
||
unknown
|
||
);
|
||
candidate.fields = candidate.fields.filter((f) =>
|
||
SEEKERS_FIELDS_FROM_SCHEMA.includes(f)
|
||
);
|
||
if (!candidate.fields.length) {
|
||
// If all dropped, fallback to default shortlist intersected with schema
|
||
const fallback = seekersMapping.defaultReadableFields.filter((f) =>
|
||
SEEKERS_FIELDS_FROM_SCHEMA.includes(f)
|
||
);
|
||
if (!fallback.length)
|
||
throw new Error(
|
||
"No valid fields remain after validation and no fallback available."
|
||
);
|
||
candidate.fields = fallback;
|
||
}
|
||
}
|
||
} else {
|
||
// If we can't read the schema (main.json shape unknown), at least ensure strings & dedupe
|
||
candidate.fields = [
|
||
...new Set(
|
||
candidate.fields.filter((f) => typeof f === "string" && f.trim())
|
||
),
|
||
];
|
||
}
|
||
|
||
return candidate;
|
||
}
|
||
|
||
// ---- Local ODMDB Data Access ----
|
||
function loadSeekersData() {
|
||
const seekersItemsPath = `${OBJECTS_PATH}/seekers/itm`;
|
||
|
||
try {
|
||
if (!fs.existsSync(seekersItemsPath)) {
|
||
console.error(`❌ Seekers data directory not found: ${seekersItemsPath}`);
|
||
return [];
|
||
}
|
||
|
||
const files = fs
|
||
.readdirSync(seekersItemsPath)
|
||
.filter((file) => file.endsWith(".json") && file !== "backup")
|
||
.slice(0, 50); // Limit to first 50 files for PoC performance
|
||
|
||
console.log(
|
||
`📁 Loading ${files.length} seeker files from ${seekersItemsPath}`
|
||
);
|
||
|
||
const seekers = [];
|
||
for (const file of files) {
|
||
try {
|
||
const filePath = `${seekersItemsPath}/${file}`;
|
||
const data = JSON.parse(fs.readFileSync(filePath, "utf-8"));
|
||
seekers.push(data);
|
||
} catch (error) {
|
||
console.warn(`⚠️ Could not load ${file}:`, error.message);
|
||
}
|
||
}
|
||
|
||
return seekers;
|
||
} catch (error) {
|
||
console.error("❌ Error loading seekers data:", error.message);
|
||
return [];
|
||
}
|
||
}
|
||
|
||
// ---- Local ODMDB Query Execution ----
|
||
async function executeOdmdbQuery(query) {
|
||
if (!EXECUTE_QUERY) {
|
||
console.log(
|
||
"💡 Query execution disabled. Set EXECUTE_QUERY=true to enable."
|
||
);
|
||
return null;
|
||
}
|
||
|
||
try {
|
||
console.log(
|
||
`\n🔍 Executing query against local ODMDB data: ${OBJECTS_PATH}/seekers/`
|
||
);
|
||
console.log("Query conditions:", query.condition);
|
||
console.log("Requested fields:", query.fields);
|
||
|
||
// Load all seekers data
|
||
const allSeekers = loadSeekersData();
|
||
|
||
if (allSeekers.length === 0) {
|
||
console.log("❌ No seekers data found");
|
||
return { data: [] };
|
||
}
|
||
|
||
console.log(`<EFBFBD> Loaded ${allSeekers.length} seekers for filtering`);
|
||
|
||
// Apply basic filtering (simplified DSL processing)
|
||
let filteredSeekers = allSeekers;
|
||
|
||
for (const condition of query.condition) {
|
||
if (condition.includes("prop.dt_create(>=:")) {
|
||
// Extract date from condition like "prop.dt_create(>=:2025-10-07)"
|
||
const dateMatch = condition.match(/>=:(\d{4}-\d{2}-\d{2})/);
|
||
if (dateMatch) {
|
||
const filterDate = new Date(dateMatch[1]);
|
||
filteredSeekers = filteredSeekers.filter((seeker) => {
|
||
if (!seeker.dt_create) return false;
|
||
const seekerDate = new Date(seeker.dt_create);
|
||
return seekerDate >= filterDate;
|
||
});
|
||
console.log(
|
||
`🗓️ Filtered by date >= ${dateMatch[1]}: ${filteredSeekers.length} results`
|
||
);
|
||
}
|
||
}
|
||
|
||
if (condition.includes("idx.seekstatus_alias(")) {
|
||
// Extract status from condition like "idx.seekstatus_alias(startasap)"
|
||
const statusMatch = condition.match(/idx\.seekstatus_alias\(([^)]+)\)/);
|
||
if (statusMatch) {
|
||
const status = statusMatch[1];
|
||
filteredSeekers = filteredSeekers.filter(
|
||
(seeker) => seeker.seekstatus === status
|
||
);
|
||
console.log(
|
||
`👤 Filtered by status ${status}: ${filteredSeekers.length} results`
|
||
);
|
||
}
|
||
}
|
||
}
|
||
|
||
// Select only requested fields
|
||
const results = filteredSeekers.map((seeker) => {
|
||
const filtered = {};
|
||
for (const field of query.fields) {
|
||
if (seeker.hasOwnProperty(field)) {
|
||
filtered[field] = seeker[field];
|
||
}
|
||
}
|
||
return filtered;
|
||
});
|
||
|
||
console.log(
|
||
`✅ Query executed successfully! Found ${results.length} matching seekers`
|
||
);
|
||
|
||
return {
|
||
data: results,
|
||
meta: {
|
||
total: results.length,
|
||
source: "local_files",
|
||
path: `${OBJECTS_PATH}/seekers/itm/`,
|
||
},
|
||
};
|
||
} catch (error) {
|
||
console.error("❌ Local query execution failed:", error.message);
|
||
return null;
|
||
}
|
||
}
|
||
|
||
// ---- Result Processing with jq ----
|
||
async function processResults(results, jqFilter = ".") {
|
||
if (!results || !results.data) {
|
||
console.log("No results to process.");
|
||
return null;
|
||
}
|
||
|
||
try {
|
||
// Use jq to filter and format results (pass data directly, not as string)
|
||
const processed = await jq.run(jqFilter, results.data, { input: "json" });
|
||
|
||
// Return the processed result
|
||
return processed;
|
||
} catch (error) {
|
||
console.error("❌ jq processing failed:", error.message);
|
||
return JSON.stringify(results.data, null, 2); // Return formatted JSON if jq fails
|
||
}
|
||
} // ---- Run PoC (generate query and optionally execute) ----
|
||
(async () => {
|
||
try {
|
||
if (!process.env.OPENAI_API_KEY)
|
||
throw new Error("Missing OPENAI_API_KEY env var.");
|
||
|
||
console.log(`🤖 Processing NL query: "${NL_QUERY}"`);
|
||
console.log("=".repeat(60));
|
||
|
||
// Step 1: Generate ODMDB query from natural language
|
||
const out = await inferQuery(NL_QUERY);
|
||
const validated = validateWithOdmdbSchema(out);
|
||
|
||
console.log("✅ Generated ODMDB Query:");
|
||
const generatedQuery = {
|
||
object: validated.object,
|
||
condition: validated.condition,
|
||
fields: validated.fields,
|
||
};
|
||
console.log(JSON.stringify(generatedQuery, null, 2));
|
||
|
||
// Step 2: Execute query if enabled
|
||
if (EXECUTE_QUERY) {
|
||
console.log("\n" + "=".repeat(60));
|
||
const results = await executeOdmdbQuery(generatedQuery);
|
||
|
||
if (results) {
|
||
console.log("✅ Query executed successfully!");
|
||
console.log(`📊 Found ${results.data?.length || 0} results`);
|
||
|
||
// Step 3: Process results with jq
|
||
console.log("\n📋 Results Summary:");
|
||
const summary = await processResults(
|
||
results,
|
||
`.[0:3] | map({email, seekworkingyear})`
|
||
);
|
||
console.log(JSON.stringify(summary, null, 2));
|
||
|
||
// Optional: Show full results count
|
||
if (results.data?.length > 3) {
|
||
console.log(`\n... and ${results.data.length - 3} more results`);
|
||
}
|
||
|
||
// Step 4: Export to CSV format
|
||
console.log("\n📄 CSV Preview:");
|
||
const csvData = await processResults(
|
||
results,
|
||
`
|
||
map([.email // "N/A", .seekworkingyear // "N/A"]) |
|
||
["email","experience"] as $header |
|
||
[$header] + .[0:5] |
|
||
.[] | @csv
|
||
`
|
||
);
|
||
if (csvData) {
|
||
console.log(csvData);
|
||
}
|
||
}
|
||
} else {
|
||
console.log(
|
||
"\n💡 To execute this query against ODMDB, set EXECUTE_QUERY=true"
|
||
);
|
||
console.log(` Example: EXECUTE_QUERY=true npm start`);
|
||
}
|
||
} catch (e) {
|
||
console.error("❌ PoC failed:", e.message || e);
|
||
process.exit(1);
|
||
}
|
||
})();
|